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Rayleigh number scaling in numerical convection 

By ROBERT M. KERR 
Geophysical Turbulence Program, National Center for Atmospheric Research, PO Box 3000, 

Boulder, CO 80307-3000, USA 

(Received 6 November 1992 and in revised form 22 September 1995) 

Using direct simulations of the incompressible Kavier-Stokes equations with rigid 
upper and lower boundaries at fixed temperature and periodic sidewalls, scaling with 
respect to Rayleigh number is determined. At large aspect ratio (6:6:1) on meshes 
up to 288 x 288 x 96, a single scaling regime consistent with the properties of ‘hard’ 
convective turbulence is found for P r  = 0.7 between Ra = 5 x lo4 and Ra = 2 x lo7. 
The properties of this regime include Nu - RaPT with f l T  = 0.28 FS 2/7, exponential 
temperature distributions in the centre of the cell, and velocity arid temperature scales 
consistent with experimental measurements. Two velocity boundary-layer thicknesses 
are identified, one outside the thermal boundary layer that scales as Ra-’l7 and the 
other within it that scales as RaP3I7. Large-scale shears are not observed; instead, 
strong local boundary-layer shears are observed in regions between incoming plumes 
and an outgoing network of buoyant sheets. At the highest Rayleigh number, there is 
a decade where the energy spectra are close to k-5/3  and temperature variance spectra 
are noticeably less steep. It is argued that taken together this is good evidence for 
‘hard’ turbulence, even if individually each of these properties might have alternative 
explanations. 

1. Introduction 
Two key features of a transition observed in a recent high Rayleigh number 

convection experiment by Heslot, Castaing & Libchaber (1987) are first that at a 
given Rayleigh number the normalized heat flux, or Nusselt number (4.3) changed its 
scaling with respect to Rayleigh number from the classical Ru’/~ law to and 
second that distributions of temperature in the centre of the convective cell changed 
from Gaussian to nearly exponential. This was not the first time that significant 
deviations from the classical law have been observed (Chu & Goldstein 1973), but it 
was the first time that the accuracy of the experiment, control of temperature on the 
boundary, and the extent of the new regime, from Ra = 4 x lo7 to were sufficient 
to make such a small deviation from the classical law appear plausible. The new 
scaling regime was called ‘hard‘ turbulence, as opposed to the R d 3  scaling regime 
which was designated ‘soft’ turbulence. 

The flow studied by Heslot et al. (1987) was gaseous helium at 5 K in a 1 cm 
diameter, small-aspect-ratio cell. Since the theoretical prediction for the transition to 
convective rolls assumes infinite aspect ratio (Chandrasekar 1961), a criticism of this 
experiment has been that the new scaling regime might not be a generic property of 
convection, but could be related to the effect of the sidewalls. To address this criticism, 
experiments at different aspect ratios are reported by Wu & Libchaber (1992). In 
addition, visualizations of similar flows by Zocchi, Moses & Libchaber (1990) and 
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additional diagnostics have been reported that have allowed some interpretation of 
the new regime. Some of the new measurements determine temperature fluctuations 
at different locations in order to provide information on how temperature and velocity 
scale with Rayleigh number (Sano, Wu & Libchaber 1989; Wu & Libchaber 1992) 
and how temperature distribution functions vary with location (Castaing et al. 1989). 
The visualizations in a water tank by Zocchi et al. have shown that the flow in the 
hard turbulence regime is characterized by plumes that are pulled from the surface 
layer by a strong large-scale shear. From these data, phenomenological theories for 
the transition have been proposed by Castaing et al. and Shraiman & Siggia (1990) 
that predict scaling laws for the dependence of Nusselt number, temperature scales, 
velocity scales, and boundary-layer length scales. This paper will use the term ‘hard’ 
turbulence for the experimental results just quoted and those theoretical predictions 
that are common to Castaing et al. and Shraiman & Siggia. 

Another approach to studying the transition to turbulence is direct simulation. 
In simulations of Rayleigh-Bhard convection with rigid (no-slip) (McLaughlin & 
Orszag 1982) and stress-free (free-slip) (Curry et al. 1984) boundary conditions, 
some of the experimentally observed transitions in low Rayleigh number convection 
have been simulated directly. More recently Grotzbach (1982), Domaradzki & 
Metcalfe (1988), Eidson, Hussaini & Zang (1986), and Moeng & Rotunno (1989) 
have simulated no-slip convection for Rayleigh numbers up to the order of 400000. 
This Rayleigh number is two orders of magnitude less than the Rayleigh number for 
the transition observed by Heslot et al. (1987), but if the effective Reynolds number 
of convection scales as the square root of the Rayleigh number (since viscosity 
enters Rayleigh number as a square), the channel flow simulations of Kim, Moin 
& Moser (1987) suggest that with high-powered numerical methods and extensive 
computational resources an order of magnitude increase in Reynolds number above 
the direct simulations just listed, i.e. two orders of magnitude increase in Rayleigh 
number, is feasible. This would make the Rayleigh number of the simulations roughly 
comparable to the Rayleigh numbers in water tank experiments (Chu & Goldstein 
1973). Even if the simulations cannot simulate a range of Rayleigh numbers sufficient 
to verify the Ra2/7 scaling regime, it would be hoped that with all the physical data 
available some new insights into the physics behind the transition could be made. 
The purpose of this investigation is to reach this regime. 

Many compromises with the details of the experimental device must be made if a 
fully three-dimensional turbulent simulation is desired. The most significant difference 
here will be in the lateral boundary conditions. The original experiment was in an 
aspect-ratio-one cylindrical cell with rigid boundary conditions on all sides. Current 
numerical methods are not capable of representing rigid walls in more than one 
direction if the computational efficiency required to reach high Reynolds numbers is 
desired. Free-slip sidewalls can be used, as has been done by DeLuca et al. (1990), 
but one possible way of removing sidewalls from consideration is to study only large- 
aspect-ratio (large-horizontal direction to vertical height) cells. In this case, the type of 
lateral boundary condition, periodic, free-slip, or rigid, should not affect the scaling if 
hard turbulence is a generic property of convection. This is currently being checked by 
introducing free-slip sidewalls for large aspect ratio, with preliminary results reported 
in Kerr et al. (1995). The range of Rayleigh numbers to be discussed is 50000 to 
2 x lo7, where the linear instability to convective rolls at large aspect ratio occurs at 
Ra = 1708. Lower Rayleigh numbers are not addressed since the series of transitions 
up to Ra = 400000 through periodic rolls, chaotic rolls, and cellular patterns has 
already been described by Grotzbach (1982) and McLaughlin & Orszag (1982). 
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FIGURE 1. Dependence of Nusselt number on Rayleigh number: +, time-average at the walls Nu, 
(4.3); 0, time-average of the integral of the normalized heat flux Nu(z )  (4.4) (- - -, Wu & 
Libchaber 1992) Nu = 0 . 1 4 6 R ~ ~ ~ ~ ~ ~ .  A least squares fit to N u  at the walls is N u  = 0.186R~1'.'~~. 

Surprisingly, by restricting our study to large aspect ratios several advantages ap- 
peared. First, it is found that Nusselt number scaling consistent with hard turbulence 
appears at much lower Rayleigh numbers than in the experimental small-aspect-ratio 
cell with rigid sidewalls - an observation that has bcen reported experimentally by 
Wu & Libchaber (1992). Second, while some improvement in convergence was antic- 
ipated from simulating a larger aspect ratio, if this represents a larger ensemble of 
convection cells, the actual improvement in the convergence of statistical properties 
of fluctuating statistics, such as the heat flux, at large aspect ratio was more rapid 
than the larger volume simulated would suggest and significantly fewer convective 
timescales were required to get good statistics than in low-aspect-ratio experiments 
(Wu & Libchaber 1992) and simulations (Werne et al. 1991). Owing to these fortunate 
properties of the large-aspect-ratio flow, comparisons with many of the experimental 
observations and theoretical predictions of scaling of hard turbulence can be made. 
A plot of Nusselt number versus Rayleigh number for these calculations is shown in 
figure 1. Two numerical curves are given, one the average of the Nusselt number at 
the walls (4.3), the other the integral of the averaged normalized heat flux (4.4) across 
the box, their difference giving an estimate of the error of the statistical sample. This 
order of error is also found in most of the global and local properties to be reported 
as discussed in $4. 

The experimental comparison in figure 1 is taken from Wu & Libchaber (1992), 
which like the experiment is large aspect ratio, covers this range of Rayleigh numbers 
and has the same Prandtl number, 0.7 for a gas. A least-squares fit to N u  at the 
walls is N u  = 0.186RaPT, where /3T = 0.276 x: 2/7, while the experimental results fit 
N u  = 0.146Ra0.286. The experimental claim by Wu & Libchaber (1992) is that their 
range of Rayleigh numbers is adequate for discriminating between l j T  = 1/3 and 2 / 7  
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for N u  - 1, and the results support 2/7. The experiment of Chu & Goldstein (1973) 
in water, which is again large aspect ratio and covers this range of Rayleigh numbers, 
but a different Prandtl number 7.0, gives N u  = 0.183Ra0.278, which is virtually identical 
to the simulated curves. It seems that independent of whether the Prandtl number is 
0.7 or 7.0, for large aspect ratio magnitudes vary by only 30%. 

While the fit in figure 1 suggests confirmation of the 2/7 scaling, N u  versus Ra will 
not be used as the primary evidence of hard turbulence scaling for these simulations. 
This is because if one prefers to scale N u  - 1 with Rayleigh number, then numerically 
N u  - 1 = 0 . 1 7 R ~ ' / ~ .  This is effectively plotted by the thermal boundary layer height 
in figure 13, showing that the scaling exponent depends strongly on the choice of 
analysis in this Rayleigh number regime. Instead, extensive analysis of secondary 
scaling properties, primarily related to boundary layers and more difficult to measure 
experimentally, will be used to identify the hard convective turbulence regime and 
to discriminate between the different theoretical explanations for the 2/7 scaling 
behaviour. It is hoped that once the hard turbulence regime is clearly identified 
these simulations will be positioned to provide us with important insights into the 
phenomena of hard turbulence. 

The paper is organized as follows. After some discussion of theory, the numer- 
ical method, and resolution requirements for these simulations, the analysis will be 
presented in four parts. The first part will show time-averaged profiles of dynamical 
quantities in the vertical and the Rayleigh number scaling of boundary layer heights, 
velocities and temperature. The second part will discuss the vertical velocity skewness, 
which is important in modelling atmospheric diffusion. The third part will consist of 
flow visualization with two-dimensional plots and three-dimensional isosurface plots. 
The fourth part will consist of probability density functions of temperature. Another 
important piece of analysis is spectra, which will be presented with the discussion of 
resolution. 

2. Theory 
The numerical results will be compared primarily with the theoretical predictions 

of Castaing et al. (1989) and Shraiman & Siggia (19901. The primary objective of 
all these theories is to provide an explanation for the N u  - Ra2/? scaling regime. 
Each makes additional predictions that can be tested by experiments, numerics, or 
both. Since testing the conflicting theoretical assumptions and predictions is a major 
objective of these simulations, a short review of the theory seems essential. 

The starting point for both Castaing et al. (1989) and Shraiman & Siggia (1990) 
is the following: it is known that in dimensionless variables the kinetic energy 
dissipation h equals ( N u  - 1)Ra, and the Nusselt number scales as the inverse of 
a thermal boundary-layer height Nu m  AT. The classical arguments of Prandtl 
(1932) and Priestley (1954), reviewed along with more recent references by Castaing 
et al. (1989), predict N u  - R u ' / ~  by making the additional assumption that ,IT is 
the only small length scale in the problem. The velocity scaling of Deardorff (1970) 
follows from the classical theory by inserting the classical Nusselt number scaling in 
(2.4), and the height of any velocity boundary layer and the Kolmogorov length scale 
rj = (v3/e)'I4 both scale as 1 " ~  in the classical theory. 

In both Castaing et al. and Shraiman & Siggia the assumption of one small length 
scale is relaxed. Instead, relations between a velocity scale, non-dimensionalized as 
a Reynolds or Pkclet number Pe  = ud/rc, AT and a temperature scale A ,  are used 
to derive new scaling laws. Following the notation of Castaing et al., if power-law 



Rayleigh number scaling in numerical convection 143 

Ref P T  E Yc  Yw P u  P: 
C 113 0.44=4/9 -119 113 
H 217 0.43 = 311 -117 117 
SS 217 0.43 = 317 -117 317 
El  0.285 0.485 -0.14 
E6 0.286 -0.20 
2D 211 0.54 -117 -0.064' 
3D 0.28 0.46 -111 -1114 111 317 

TABLE 1. Comparison of scaling exponents from theory, experiment, and simulations. The exponents 
are defined by equations (2.1)+2.3) and (2.8): N u  = d / l T  - Rub?, Re = ud/K - Ra', A , / A  N Ra:, 
A , / A  - Ra;, & / d  - Ra-bU, and z ' / J  - Ra-8.. References are classical scaling C and hard 
turbulence scaling H as given by table 1 of Castaing et  al. (1989): Shraiman & Siggia (1990). SS; 
experiments for aspect ratio 1, El,  and aspect ratio 6.7, E6, from Wu & Libchaber (1992); the 
two-dimensional simulations of Deluca et al. (1990) and Werne et al. (1  991 ), 2D; and the present 
three-dimensional simulations 3D. Blanks are left where a theory does not make a prediction or 
there are no experimental or simulated results. * denotes yw for the two-dimensional simulations 
taken from the sidewall temperature exponent. The classical scaling of velocity is consistent with 
Deardorff (1970). 

scaling is assumed the exponents P T ,  6, yc,  Po, and 6 are defined by 

N u  = d//ZT - RaBT, P e  = ud/x  - Rae, (2.1) 

A , / A  - RaYC, i , / d  - Ra-Bt, (2.2) 

W,d2/x - Ra', (2 .3)  
where op is a characteristic frequency, Lo is a velocity boundary-layer height, d is 
the height of the box, and A is the temperature difference between the surfaces. The 
scaling of all of these terms, except a,, will be addressed in this paper. Three velocity 
length scales and two temperature scales will be discussed. The velocity length scales 
will be compared with the predictions of Castaing et af. (2.11) with flu = flu, Shraiman 
& Siggia (2.8) with flu = f lz, and the Kolmogorov length scale (4.1) with Pt, = fly. 
The two temperature scales and exponents will be based on the temperature in the 
centre, A ,  with ye,  and near the walls, A ,  with yw. Exponents from theory, experiment, 
two-dimensional simulations, and the three-dimensional simulations to be discussed 
are summarized in table 1. 

To determine relationships between these exponents, a number of simple assump- 
tions have been made. A relation between 6 and P r  can be obtained by assuming that 
the dissipation E is proportional to the velocity scale cubed divided by a large length 
scale u3/d, which is generally believed to be valid for isotropic turbulence and which 
Shraiman & Siggia (1990) justify for boundary layers. From this and the known 
dependence of dissipation upon ( N u  - 1)Ra 

( ~ d / x ) ~  - Ed4/vx2 = (Nu  - l )Ra  

36 = flr + 1, 

(2.4) 

(2.5) 

and 

a relation between 6, P T ,  and yc can be obtained by assuming that the vertical velocity 
and temperature fluctuations are correlated, that is, the heat flux scales as Ped, or 

f + Y c  = P T .  (2.6) 
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Both Castaing et al. (1989) and Shraiman & Siggia (1990) use relations (2.5) and 
(2.6). 

To solve for PT, e,  and yc ,  one more condition between the velocity and AT is 
necessary. Both Castaing et al. and Shraiman & Siggia develop pictures where there 
is a region above a thermal diffusive layer with a length scale associated with the 
velocity, but have different views as to the nature of that region. Castaing et al. 
develop a picture of a mixing region and assume that the velocity throughout the 
central portion of the box is determined by the acceleration of the vertical velocity to 
the top of a mixing layer. This yields the relation 

€ + 2pT = 1. (2.7) 

Shraiman & Siggia calculate how a shear would change the heat flux, concluding 
that - d /3 ,  where z = du/dz is the velocity stress at the wall, and assume that 
z depends upon the characteristic velocity of the shear and the characteristic length 
scale as it would in boundary-layer flows, that is if 

z * / d  = i u / d  = v/(u,d) = c / P e  - Ra-A 
and 

then 

and 

xwd2/K = (uw/ z* )d2 /K  = Pe2/a,  

iT - Pe21’ 

2 
PT = 3 f .  (2.9) 

Another way of expressing z* is 

(2.10) 112 z * / d  = A,/d = 2 [c/(z,d2/ti)] . 

Whether relation (2.7) or (2.9) is used, the resulting values for / IT ,  E, and yc  are 2/7, 
317 and -1/7. 

How does the velocity boundary layer I, scale in these theories? An estimate of 
this scaling is an integral part of the theory of Shraiman & Siggia who predict that 
Po = pZ = E = 3/7. In Castaing et al. additional assumptions are made that yield the 
relation for the height of the mixing layer d,/d - Ra(1uT/d)4 or 

pu = p u  = 4pT - 1 (2.1 1)  

and pL, = pu = 1/7. Another suggestion, known as the Thomae scaling, assumes that 
the dissipation 8 is proportional to the square of the characteristic velocity divided 
by the height of the mixing layer - ( N u  - 1)Re or 

2E. + 2p, = P T  + 1. (2.12) 

This yields a formula for At similar to the definition of the Taylor microscale with 
flu = 3/14. In Shraiman & Siggia the only relation between Re, I,,, and the dissipation 
E is (2.4). 

Both Castaing et al. and Shraiman & Siggia assume that I., > IT, an assumption 
that is consistent with the scaling of A, in Castaing et nl. and the Thomae scaling, but 
is not consistent with the scaling of i, in Shraiman & Siggia where 1, = z* decreases 
faster than AT.  Based on this Shraiman & Siggia predict a cross-over at very high 
Rayleigh number from the Nu - Ra2/7 behaviour to another, as yet undetermined, 
regime. 
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3. Equations, boundary conditions, and numerical method 
How should the experimental upper and lower boundary conditions be represented 

numerically? In the experiment of Heslot et d. (1987) the upper and lower tempera- 
ture surfaces were uniform at any given time, but the temperature fluctuated in time 
to maintain a constant flux. This boundary condition would be feasible numerically, 
but a minor compromise is to impose a constant temperature at the boundaries at all 
times. The experimental velocity boundary condition is no-slip or rigid, as opposed 
to the simplest numerical boundary condition for convection which is free-slip, or 
stress-free. An important element of the experimental observations and the theoretical 
explanation of Shraiman & Siggia (1990) is the appearance of shears and a viscous 
boundary layers. A no-slip boundary condition is necessary to get realistic boundary 
layers such as observed in channel flow (Kim et al. 1987) and for this reason is 
chosen instead of a free-slip boundary as the velocity boundary condition for this 
study. Properties common to many turbulent flows, such as exponential distributions, 
might exist in convection with free-slip boundaries (Sirovich, Balachandar & Maxey 
1989; Balachandar & Sirovich 1991), but differences in skewness profiles near the 
boundaries will support the need for true viscous boundary layers in the dynamics of 
hard turbulence. 

In dimensionless form the equations to be represented are the incompressible 
Navier-Stokes equations in the Boussinesq approximation between two walls 
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i?U 1 
- + u - Vu = --VP + T E  + (1 /Re)V2u, 
o't PO 

dT 
- at + U - V T  = O V ~ T ,  (3 .2)  

v - u  = 0; (3 .3)  
x and y will be taken to be the horizontal directions and z will be the vertical. The 
rigid boundary conditions are 

(3.4) 

where w is the vertical velocity. The physical parameter that shall be varied is the 
Rayleigh number, defined as 

(3 .5)  
V" 

where o = V / K  is the Prandtl number and TI and TO are the temperatures at the top 
and bottom walls. For this study po = 1, the Boussinesq term ag = 1 ,  the height d of 
the box is 2 (for z running from -1 to l), TI = 1, To = -1, and o = 0.7, the value 
for air. Rayleigh number was varied by changing the viscosity, which ranged between 
v = 0.015 and 0.00075 for Ru = 5 x lo4 and 2 x lo', all other physical parameters 
being fixed. The aspect ratio L/d of the horizontal periodicity to the height of the 
box is 6. Some references to preliminary calculations with smaller aspect ratios and 
different Prandtl numbers will be made. 

While simulation of periodic boundary conditions or free-slip upper and lower 
boundaries can easily be accomplished with Fourier, sine, and cosine transforms, 
to simulate rigid upper and lower boundary conditions requires more sophisticated 
methods to guarantee consistency between the velocity conditions at the walls, the 
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viscous terms near the walls responsible for the pressure boundary condition, and 
incompressibility. In addition, because strong vertical shear is concentrated near the 
boundaries, fine vertical resolution near the walls but less resolution in the interior 
is desirable. To address these requirements numerically, a Chebyshev method will be 
used. Some advantages of Chebyshev methods are more resolution near boundaries, 
a recursion formula for finding derivatives in the function space, and a fast transform 
(the cosine transform) between Chebyshev and physical space. The recursion formula 
implies that matrices needed to solve the Poisson equation can be reduced to nearly 
diagonal forms and solved efficiently and directly in one direction. To use Chebyshev 
polynomials in more than one direction would create sparse, but full, matrices that 
would require the use of less direct and more expensive methods. This is the primary 
reason that numerical work has been confined to Fourier methods in the horizontal. 

The Chebyshev method to be used for solving the Poisson equation is based upon 
divergence-free functions as outlined by Moser, Moin & Leonard (1983) to impose 
the consistency between boundary conditions (8) and incompressibility (7) in the 
implicit step. Some advantages of imposing incompressibility are discussed by Thual 
(1992) for his calculation of zero Prandtl number convection using this code. The 
divergence-free vector functions use a poloidal-toroidal decomposition to represent 
the velocity field. This reduces the Stokes terms to second- and fourth-order equations 
in z .  The no-slip conditions are, for the poloidal terms, that the functions are zero at 
the boundary 

and for the toroidal term that both the value and the first derivative are zero: 
F n l z = + l  = 0, (3.6) 

(3.7) 

(3.8) 

(3.9) 

GnIz=+l = Gn,zIz=kl = 0. 

Fn = (1 - Z2)Tn. 

G, = (1 - z2)’Tn. 

For the F-functions the combinations of Chebyshev polynomials are 

For the G-functions the combinations of Chebyshev polynomials are 

The weight functions that go with these functions are for F 

P,  = ( T,.-1 - Tn+1)/2n( 1 - C2yl2 (3.10) 

and for G 

Q n =  (3- n(n - 1) (n + 2 l ) ( n  T,, - 1) + *) n(n + 1) /4( 1 - l 2 ) l l 2 .  (3.11) 

Except for the (kx, k y )  = (0,O) horizontal Fourier mode, the divergence-free poloidal 
functions for the velocity are 

and the toroidal functions are 

(3.12) 

(3.13) 
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Ra t o  tf 
5.0 x 104 24 44 
1.0 x 105 24 44 
2.0 x 105 24 44 
4.0 x lo5 26 34 
5.0 x lo5 27 40 
1 . 0 ~  lo6 26 1000 
2.5 x lo6 26 36 
5.0 x lo6 49 64 

2.0 x lo7 24 140 
1.0 x 107 28 37 

A t / t  nx = ny n, 
0.42 64 32 
0.46 64 32 
0.45 64 32 
0.17 128 48 
0.27 96 48 

10.0 128 48 
0.18 128 48 
0.21 192 64 
0.14 192 64 
1.25 288 96 

Ax 
0.188 
0.188 
0.188 
0.094 
0.125 
0.094 
0.094 
0.063 
0.063 
0.042 

Az, 
0.049 
0.049 
0.049 
0.033 
0.033 
0.033 
0.033 
0.025 
0.025 
0.016 

AZ, 

0.0048 
0.0048 
0.0048 
0.0021 
0.0021 
0.002 1 
0.0021 
0.0012 
0.0012 
o.Ooo5 

r (4.2) 
0.104 
0.082 
0.065 
0.052 
0.048 
0.038 
0.028 
0.022 
0.018 
0.014 

d l N u  Z*  

0.54 0.040 
0.44 0.030 
0.36 0.022 
0.30 0.017 
0.29 0.015 
0.24 0.011 
0.18 0.008 
0.16 0.006 
0.12 0.004 
0.10 0.003 

TABLE 2. Simulation statistics: Rayleigh numbers; period used for the statistical samples, first in 
simulation variables to and t f ,  then normalized by 8 / 1 4 ;  meshes used the horizontal spacing Ax, the 
vertical spacing in the centre Azc, and the vertical spacing at the wall Azw; physical lengthscales - 
Kolmogorov scale q by (4.2), thermal boundary layer thickness AT calculated by dlNu,  and the wall 
unit z* calculated by d x 2.llW3I7 from figure 13. 

with the vector weight functions respectively 

and 

(3.14) 

kx/(kx2 + k,’) 8/82 ( k,/(kx2 + i k;) 8/8z) Qn. (3.15) 

For the (kx, kY) = (0,O) horizontal Fourier mode the two divergence-free functions are 
u = F,,v = w = 0 and v = F,,u = w = 0 and the weight functions are P,. 

For the temperature, only the F-terms are used to represent constant, zero tem- 
perature at the walls, with the temperature difference between the walls represented 
by a linear gradient. Both the contribution of the linear temperature gradient to the 
nonlinear advection term in the temperature equation and of the Boussinesq term in 
the velocity equation are calculated with the full nonlinear terms in physical space. 

Using these expansions for the velocity and temperature reduces the matrices to 
be solved for the Stokes equation and scalar diffusive equations to narrow bands 
that required minimal time to invert. Dealiasing was accomplished through the 2/3 
rule and all mesh sizes will refer to the number of collocation points. Third-order 
Runge-Kutta using the low-storage scheme of A. A. Wray (private communication) 
and adapted to a nearly third-order Crank-Nicholson semi-implicit method on the 
Stokes terms by Spalart, Moser & Rogers (1991) was used for the time advancement. 
The timestep was chosen at the beginning of each Runge-Kutta cycle using the 
standard CFL criterion with CFL=1.5, where the linear stability limit for third-order 
Runge-Kutta is $. Two types of Cray computers were used for these calculations. 
On a Cray X-MP processor each calculation of the nonlinear terms and the implicit 
time-advancement required 30 s for a 1283 mesh, while 6 s of single-processor Cray 
Y-MP time is required. 

The calculations were initialized with random initial conditions on coarse meshes, 
then run on the coarse mesh until physical profiles and Nusselt numbers developed. 
Since physical profiles could often be obtained with resolution less than half that 
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given in table 2 this procedure significantly reduced the computational time required 
to reach statistical equilibrium. Shortly before the first times given in table 2, the 
calculations were remeshed by adding additional modes with zero value, then run 
until the transients associated with remeshing disappeared. Then the calculations 
were continued to obtain statistical samples. 

4. Resolution, statistical sampling, and spectra 
A major question when doing direct simulations of fluids is when the resolution 

can be considered sufficient. It has been shown by Kerr (1985) that in order to resolve 
all dissipation statistics accurately, at least one decade of the calculation must be 
dedicated to the viscous regime. This is very expensive and very rarely is this type of 
resolution used. It is more common to require that the mesh size be the order of the 
Kolmogorov, or dissipation, length scale 

114 
0 2  

= ( ( N u  - 1)Ra) (4.2) 

It has been shown for channel flow (Kim et al. 1987) that if the code is fully dealiased 
this is sufficient to obtain good, large-scale statistics, and Grotzbach (1983) has shown 
that the same criterion applies to convection. The Kolmogorov length scale calculated 
from the data in figure 1 and equation (4.2) gives q / d  NN 1.3Ra-ps with p, = 0.32, in 
agreement with Grotzbach. 

Based on these resolution studies, all the calculations to be reported use mesh 
sizes in the centre of the box within a factor of 2 of the Kolmogorov length scale. 
Table 2 summarizes the parameters of the simulations to be discussed, including 
Rayleigh number, time span of the simulations, number of physical space colocation 
points, and resolution information. To access resolution, three physical length scales 
that come from the simulations are given to allow comparison with three mesh 
spacings, maximum and minimum vertical resolution, and the horizontal resolution. 
The physical length scales are a thermal length scale AT = d/Nu,  the Kolmogorov 
length scale y defined by (4.2), and a wall unit Z* taken from the fit in figure 13. 
Less resolution is used in the horizontal than vertical in the centre of the box mainly 
due to the more extreme vertical resolution requirements near the walls, where it is 
desirable to have resolution based on z*  that is similar to Kim et al. (1987). 

On the Cray Y-MP it was determined that the largest Rayleigh number that 
could be adequately resolved was 2 x lo7 on a 288 x 288 x 96 mesh for aspect-ratio 
6. This calculation was also done on a 192 x 192 x 64 mesh. For Ra = 2 x lo7, 
the value of the Nusselt number on the 192 x 192 x 64 mesh was 10% above the 
value in figure 1 at the walls obtained on the 288 x 288 x 96 mesh. This Nusselt 
number dependence upon resolution is consistent with Grotzbach (1983). Where 
these calculations overlap the Rayleigh number regime of earlier calculations, the 
Nusselt number from these calculations is lower and in better agreement with the 
experiments than earlier numerical results (Grotzbach 1983; Eidson et al. 1986; 
Moeng & Rotunno 1990). 

Since one of the objectives of these calculations is to get statistically independent 
estimates of scaling variables at each Rayleigh number, a major question is how long 
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the calculations must be run for variables to converge to statistically independent 
values. It is desirable to use the shortest period possible, especially at the highest 
Rayleigh numbers where the calculations are very expensive. There does not seem 
to exist a generally agreed upon timescale from which estimates can be made. In 
part this is because, as with the Nusselt number, there is a classical estimate for the 
convective timescale and a hard turbulence estimate. To measure the true convective 
timescale would require fine-scale frequency monitoring of the simulation as done by 
Werne et al. (1991), which has not been done for these calculations. 

Another measure of determining the convective timescale (J. Wernc, private com- 
munication) that is consistent with the direct measurement of frequencies in the 
calculation of Werne et al. (1991) is to take the distance around a single roll, 
8 = 4 x 2 (the height of the box) in these calculations, and divide by the velocity 
scales. In table 2 the period used for the statistical samples is given in both simulation 
variables and normalized by 8/24,, where u, is defined in $5. For statistical purposes, 
dividing by 8/24, might be an underestimate of the number of convective timescales, 
since a time sequence such as in figure 21 clearly shows several structures containing 
the largest velocities traversing the box during each convective timescale defined by 

The 288 x 288 x 96 calculation required 400 hours of single-processor Y-MP time 
to simulate just one convective timescale. Only one large Rayleigh number simulation 
was run longer than this, roughly 10 convective timescales for Ra = lo6. The Ra = lo6 
calculation was sufficient to achieve good statistical convergence and has been used to 
make estimates of the errors of all the major statistical quantities determined from the 
shorter calculations that fill the bulk of the Rayleigh number regime to be discussed. 
This error analysis supports a conclusion reached early in this investigation that the 
quantities of primary interest, especially the Nusselt number, converge in the order of 
1/10 to 1/4 of the convcctive timescale t, = 8/u,, in part due to the large statistical 
sample achieved by using a large-aspect-ratio box. The errors due to fluctuations 
obtained from the Ra = lo6 calculation are consistent with the estimate of the errors 
for the Nusselt number by comparing the Nusselt number calculated at the walls 

with the value obtained by integrating the normalized heat flux 

(4.4) 

across the box, which are both shown in figure 1. Figure 2 shows Nu(z )  for Ru = 

2 x lo7. Since one of the primary objectives of this study is to have enough calculations 
at different Rayleigh numbers to estimate the Rayleigh number dependence of the 
Nusselt number and search for possible transitions, the rapid statistical convergence 
of the Nussult number was taken advantage of and most of the calculations were run 
at full resolution for only a fraction of the convective timescale defined by t ,  = 8/u,. 
Quantities for which statistical errors were obtained are given in table 3. For all 
of the analysis to follow, the errors in fitting ideal power laws to the results were 
greater than what the statistical errors of individual quantities would contribute in 
determining exponents. 

One measure of both resolution and the degree of turbulence of a flow is to 
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FIGURE 2. = 2 x 107; 

~ 

Quantity STD STD for It, STD for O.lt ,  
w, 4% 2 ?4" 
u, 4% 2 % 
A ,  5 ?h 3% 

A 1.5% 0.7% 
A ,  1% 0.4% 
AT 2 % 1.4% 
T W  1.6% 1% 
Nu,  4% 0.5% 1.2% 

uw 4% 2.5% 

TABLE 3. Standard deviations of individual times, samples taken over one convective turnover time 
t,, and samples taken over O. l t ,  for the Ra = lo6 calculation run for lot,. Nu,  is thc Nusselt 
number calculated from the temperature derivative at the walls. 

determine the magnitude of the velocity-derivative skewness 

which under the assumption of isotropy is equivalent to the normalized vortex 
stretching rate 

Moderate Reynolds number simulations (Kerr 1985; Vincent & Meneguzzi 1991) 
suggest that without buoyant forces, in the Reynolds number range of large numerical 
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FIGURE 3. Dissipation production terms. Velocity-derivative skewness S, (4.5) or normalized 
enstrophy production S,,, (4.6) at two Rayleigh numbers: ( a )  Ra = 5 x lo4, ( h )  Ra = 2 x lo7. (c )  
Temperature dissipation production STcT (4.8) Ra = 2 x lo7. ( d )  Enstrophy production by buoyancy 
SB (4.7), Ra = 2 x lo7. 

simulations, S,,, = 0.5. A flow can be turbulent in this sense for the Taylor microscale 
Reynolds number Rl as low as 20 (Herring & Kerr 1982). Without buoyancy, a value 
of S,, much less than 0.5 would suggest that the simulation is either not turbulent or 
not adequately resolved. In a buoyant fluid, one might expect S,,, < 0.5 because the 
vortex stretching is normalized by enstrophy produced by both stretching terms and 
baroclinic terms. RL for these calculations ranges between 13 and 66, so examination 
of the normalized vorticity production terms from vortex stretching and buoyancy 
should shed light on how turbulent the flow is. Figure 3(a) shows that in the lower 
Rayleigh number simulations of this paper this is exactly the case, at least in the centre 
of the box. But the high Rayleigh number case behaves more like our expectations 
for homogeneous, isotropic turbulence. S, in figure 3(6) for Ra = 2 x lo7 on the 
288 x 288 x 96 mesh is approximately 0.45 outside the viscous-diffusion sublayer near 
the walls, demonstrating both good resolution and turbulent flow. In the centre of 
the box, the difference between S, = 0.45 and the isotropic expectation that S,, should 
equal 0.5 could be accounted for by the production of vorticity by buoyancy. The 
normalized value 

is shown in figure 3(d) ,  and is < 0.1 except near the walls, where the enstrophy 
production by buoyancy shows evidence of strong boundary effects to be discussed. 
The temperature dissipation production profile in figure 3(c) is discussed below. 
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FIGURE 4. Time-averaged Chebyshev distributions for (a) kinetic energy and (b)  temperature 
variance for Ra = 2 x lo7. 

Using S,  to test resolution is similar to looking at spectra, since the skewness comes 
from the high-wavenumber end of the spectra. To be well-resolved, spectra should 
drop significantly at high wavenumbers. In simulations of isotropic turbulence it has 
been well-established that the high-wavenumber end of spectra should decay expo- 
nentially (Kerr 199 1) if the simulation is well-resolved. Distributions of Chebyshev 
polynomials can be used in a similar fashion. In figure 4, time-averaged Chebyshev 
distributions for the kinetic energy and temperature variance are shown. In figure 5, 

112 true horizontal spectra as functions of the horizontal wavenumber k h  = (k; + ky”) 
are given. The spectra for the individual horizontal components are not given because 
they are virtually identical to the total energy spectra. The drop in energy at the high 
modes for the vertical Chebyshev distributions and for horizontal spectra integrated 
across the box is significant. But the high-wavenumber exponential tails are short. 
Therefore, a better means of determining whether the resolution is adequate is to 
look at the vertical velocity spectrum near the wall, which figure 5(a) shows has the 
smallest relative decrease in its value at high wavenumber and therefore could be a 
more sensitive measure of resolution effects than the other spectra. Even though the 
value of the vertical kinetic energy is an order of magnitude less than the horizontal 
kinetic energy at the top of the boundary layer and the integrated horizontal and 
vertical kinetic energies, comparisons showed that if there was significantly less than 
a decade drop in the vertical kinetic energy at the top of the boundary layer at 
high wavenumbers, then contour plots and dissipation profiles show clear signs of 
numerical noise, S, is systematically lower, and the Nusselt number is typically 10% 
or more greater than the experimental values, as was the true for the 192 x 192 x 64, 
Ra = 2 x lo7 case noted above. 

Besides showing that these calculations are well-resolved, S, fi: 0.5 also shows 
that the simulations are turbulent. Another indication that the calculations are 
simulating a turbulent fluid is about a decade of a power-law regime close to k-5/3 
for the velocity spectra in figure 5(e). Spalart (1988) also finds a k-5/3  regime up to 
the highest wavenumber in a simulation with rigid boundaries, but does not have 
sufficient horizontal resolution to see any fall-off at higher wavenumbers. 

In figure 5(e) ,  a low-wavenumber kinetic energy spectrum of k-5/3 and a high 
wavenumber spectrum of k3 are given, very reminiscent of theoretical predictions in 
two-dimensional turbulence of a backwards energy cascade and a forwards enstro- 
phy cascade, with injection of energy and enstrophy at the transition wavenumber 
(Kraichnan 1967; Batchelor 1969). As will be demonstrated below there is strong 
two-dimensionality in the flow structures and there is injection of narrow plumes 
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FIGURE 5. Time-averaged horizontal spectra for Ra = 2 x lo7. Spectra are collected in cylindrically in 
planes with kh = (k: + k;) ' /* .  Minimum wavenumber is 2rc/6, where 6 is the lateral dimension of the 
box. Vertical axes are in simulation coordinates and have not been normalized to be dimensionless 
as in figures 9 and 10. (a-c) Spectra at a plane near the upper wall, z = 0.92. (d-f) Integrated 
spectra across the box. (a, d) Vertical velocity squared. (b, e )  Total kinetic energy. (c , f )  Temperature 
variance or potential energy. Lines in (e) are -5 /3  (-- - -), -3 (-- - -). Line in ( f )  is -1 
(- ~ -). 

into the interior whose thickness appears to have roughly the correct length scale to 
be a possible two-dimensional forcing mechanism. To check this possibility, figure 
6(a, b)  plots the flux spectrum, figure 6(c, d )  plots the temperature variance dissipation 
spectrum, and figure 6 ( e , f )  plots the strain spectrum near the wall and integrated 
across the box. A strong peak in the flux spectrum is not observed and the temper- 
ature variance dissipation and strain spectra do not show any pronounced change 
at the transition wavenumber between -5/3 and -3 behaviour in figure 5(e). Thus, 
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FIGUKE 6. Time-averaged horizontal spectra as in figure 5. (a-c) Spectra near the upper wall. ( d - f )  
Integrated spectra. (a,  d )  Heat flux Tw.  (b, e) Temperature derivative squared (VT)2, related to 
temperature variance dissipation x by (VT)2 = X/K.  (c ,  f) Strain squared ( V U ) ~ .  This is related to 
dissipation E and in isotropic flow is related to the enstrophy 52 = ( V U ) ~  = e/v. 

the two-dimensional mechanism just suggested is not confirmed. Instead, the best 
interpretation of the kinetic energy spectrum in figure 5(e) and enstrophy production 
profile in figure 3(b) might be that while there is a significant non-isotropic convective 
component, the dynamics can still be largely described by homogeneous, isotropic 
turbulence. It should be noted that the observation here of a -5/3 energy spectrum 
is consistent with the experimental spectrum in Deardorff & Willis (1985), but is 
not consistent with a recent experimental determination by Tong & Shen (1992) of 
velocity structure functions consistent with the Bolgiano -1 1 / 5  prediction for strati- 
fied flow. For now, judgement on these differences will await new calculations being 
performed to determine Prandtl number effects. 
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Even though the normalized vorticity production in the centre of the convection 
box has values consistent with isotropic turbulence, the skewness of the production 
of temperature variance by the advection terms is very different than the expectation 
from isotropic studies. Figure 3(c) plots 

which, like the normalized enstrophy production, is 0.5 for passive scalars in isotropic 
flows. Here it is consistently less than 0.2. It should also be noted that the temperature 
spectrum in figure 5 ( f )  is noticeably less steep, close to k-l ,  than the isotropic spectrum 
for passive scalars of -5/3. Experimental frequency spectra are also less steep than 
-5 /3  (Sano et al. 1989). There will be further discussion of temperature spectra in the 
conclusion, but a complete discussion of the signs of anisotropy in the temperature 
field will require careful analysis of spectra of all the terms in the temperature variance 
dissipation equation and will not be discussed here. 

5. Vertical profiles and Rayleigh number scaling 
Turbulent convection is traditionally divided spatially into thermal boundary layers 

with steep temperature gradients and a turbulent regime away ~ from boundaries with 
a small mean temperature gradient. The temperature profile T ( z )  in figure 7 shows 
these two regions. To investigate the assumptions of Castaing et al. (1989) and 
Shraiman & Siggia (1990) that there should be two boundary-layer length scales, one 
for the temperature 2, and one for the velocity A,, figures 8-10 show the temperature 
variance, the r.m.s. velocities, and the energy dissipation for Ra = 2 x lo7. After 
some general discussion of these profiles, the Rayleigh number scaling of velocity, 
temperature, and length scales will be presented in figures 11-13. 

From figure 7, one definition of a thermal boundary-layer height can be determined 
by the gradient of the mean temperature at the wall. Another can be obtained from 
figure 8, which shows the temperature variance profile T’2 = ( T  - This profile 
has its strongest fluctuations near the walls and is nearly uniform across the centre 
of the box. Two temperature scales are defined, one A ,  in the centre and the other 
A ,  at the peak of the temperature variance profile near the wall. The location of the 
maximum of T’2 will be used as the thermal boundary-layer height in figure 13. 

Figure 9 shows the vertical profiles of the vertical velocity wrmsd/rc and horizontal 
velocity u , , , ~ / K :  normalized into Piclet numbers for Ra = 2 x lo7. urms is taken to be 
the fluctuating component of the total horizontal velocity 

where both u.X and z?; are found to be small. Similar profiles, for different Rayleigh 
numbers, are found for the simulations of Moeng & Rotunno (1990) and the experi- 
ments of Deardorff & Willis (1967). The peak of urmS is near the wall and resembles 
in some ways the classical profile in a shear flow (Kim et al. 1987), with a large 
gradient up to a maximum near the walls and a more gradual decrease up to about 
half-way towards the centre of the box. The horizontal kinetic energy in the centre 
of a channel flow is less than half the kinetic energy at the maximum position, while 
here there is a broad plateau across the centre of the box significantly above one-half 
the maximum. Despite these differences, the profile of u,,, suggests the presence of 
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FIGURE 7. Time-averaged temperature profile T ( z )  for Ra = 2 x 10'. 
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FIGURE 8. Time-averaged temperature variance profile T'z ( z )  for Ra = 2 x lo7 in simulation 
variables. Two temperature scales can be defined, one in the centre A ,  and another at the peak A,.  
A definition of is the location of A,. Arrows indicate sources of temperature and length scales 
used in figures 11 and 13. 
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FIGURE 9. Time-averaged normalized velocities for Ra  = 2 x lo7 : 0, horizontal velocity urmsd/ti.  X, 

vertical velocity wrmsd/ti. Velocity scales u,d/lc, uwd/t i  and w,d/K can be defined from the centre of 
urmsd/zc, the peak of u,,d/K and the centre of w,,,d/K. The velocity boundary layer height A, can 
be defined as the location of u,. The total kinetic energy, iu;ms + is nearly constant outside 
the boundary regions. Arrows indicate soiirccs of velocity and length scales used in figures 12 and 
13. 

shears near the boundaries, which is an assumption of the scaling theory of Shraiman 
& Siggia (1990). Shears are also indicated by the graphics to be presented in $7. 
The position of the maximum of u,,,~ will be used as one definition of a velocity 
boundary-layer height AU = 1, in figure 13. Two velocity scales (PCclet numbers) that 
can be determined from the profile of u,,,yd/lc are in the centre u,d/lc and at the 
maximum u,d/lc. 

While u,, superficially resembles the horizontal velocity profiles in turbulent bound- 
ary layers, w,,, behaves very differently than it does in turbulent boundary layers 
such as Kim et al. (1987). In turbulent boundary layers w,,, decreases with height 
above the point of maximum urm. For convection, w,,, increases all the way to the 
centre of the box, where the characteristic Peclet number w,d/K is taken. The increase 
of wlms is less rapid than u,,, near the walls, but is still concentrated near the walls 
with a rounded plateau through the centre of the box. This could be consistent with 
the picture of Castaing et al. (1989) that the vertical velocity accelerates to its value 
in the centre in a boundary region, but they assume that the acceleration will occur 
within the thermal boundary layer, not at the height of the velocity boundary layer 

nearly constant with z outside the boundary regions. 
Figure 10 plots the kinetic energy dissipation E scaled by the energy input from 

the turbulent heat flux ( N u  - l)Ra for Ru = 2 x lo7. It is similar to the profile of E 
in Moeng & Rotunno (1990), who plot all the terms in the turbulent kinetic energy 
budget. This function is just below 1 across most of the box, showing a balance 

as indicated by figure 9. The total kinetic energy across the box, + 2w,,,y, 1 2  is 
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FIGURE 10. Time-averaged, normalized kinetic energy dissipation (Ed4/v~2)/((Nu - 1)Ra) (2.4). A 
value just below 1 across the centre shows a near balance between energy input and dissipation. 
The average wall stress z, = (Ew/v)'/2 (5 .2) .  

between energy input and dissipation. Only near the walls is the dissipation larger, 
where it increases rapidly. The location at which the dissipation increases rapidly near 
the walls dcfines a boundary layer that thins with Rayleigh number. The maximum 
dissipation at the walls increases with Rayleigh number such that roughly 1/4 of the 
total dissipation comes from the wall region for all the Rayleigh numbers studied. 
The wall stress, which is used in equations (2.8) to determine a length scale z*,  is 
related to dissipation at the walls E ,  by 

T; = E , / v .  (5.2) 

Based on the locations noted for figures 8 and 9, figures 11 and 12 plot characteristic 
values for velocity and temperature respectively. These results can be compared with 
Castaing et al. (1989) and Shraiman & Sjggia (1990), who make equivalent predictions, 
to leading order, for how the characteristic velocity and temperature should scale with 
Rayleigh number. Comparisons can also be made to the measurements by Sano et al. 
(1989) and Wu & Libchaber (1992) and results from the two-dimensional calculations 
by Werne et af. (1991). 

The r.m.s. temperature fluctuations A , / A  in the centre and A , / A  at the top of the 
surface layer are plotted in figure 11, where A = 2 is the temperature difference across 
the box. The dashed line for & / A  goes as 0 . 6 2 R ~ - ' / ~ ,  which is consistent with the 
theoretical prediction of Castaing et ul. (1989) and Shraiman & Siggia (1990) that 
y = yc = -1/7. The two-dimensional simulations of Werne et ul. (1991) also find 
y w -1/7. The dot-dashed curve is the large-aspect-ratio result from Wu & Libchaber 
(1992) A , / A  = 1.9Ra-*.**. (For small aspect ratio Wu & Libchaber (1992) fitted Ru-' /~  
as shown in table 1.) As a check on the consistency of scales, one can compare the 
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FIGURE 1 1 .  Dependence of temperature scales defined in figure 8 on Rayleigh number. X, A , / A ;  
0, A , / A ;  - ~ ~ through & / A  goes as 0 . 6 2 R ~ - ' / ~ ;  - - - th rough A , / A  goes as 0 . 3 7 R ~ - ' ' ' ~ ;  

is the large-aspect-ratio result from Wu & Libchaber (1992) 1 . 9 R ~ ~ " ~ " .  

Nusselt number to the product of the temperature scale and velocity scale to be 
discussed next. By a Cauchy inequality we know that N u  - 1 6 ( d , . / A ) ( w , d / ~ ) .  For 
these calculations N u  - 1 = 0.17Ra1/3 = 0.62Ra-'" x 0 . 2 7 R ~ O ~ ~ ,  suggesting that the 
turbulent heat flux comes from well-correlated temperature fluctuations and vertical 
velocity. This is the assumption of equation (2.6). 

While the scaling of & / A  is roughly in agreement with theory and experiments, 
A , / A  behaves quite differently with yw = -1/14 or d,/d = 0.37Ra-'/14 fitting most 
closely. In both Wu & Libchaber (1992) and Werne et al. (1991) the temperature 
fluctuations near the sidewalls are also significantly less steep than in the centre. 
This suggests that there might be a relationship between A ,  determined near the 
horizontal boundaries in these calculations and the temperature scale determined at 
the sidewalls in flows with lateral boundaries. This seems plausible if the horizontal 
boundary layers continue up the sidewalls in those simulations and experiments. 

Figure 12 plots uwd/rc, u , ~ / K  and w , ~ / K ,  maximum and centreline values of the 
r.m.s. horizontal and vertical velocities as defined for figure 9. Instead of plotting the 
theoretical prediction of F using PT = (2.5) to yield f = 5 = 0.43 = (i - A), two 
different power laws are shown, one with E = 5 = f - $ = 0.46 following u, and 
w, and the other with e = $ = + 1 = 0.52 following u,. u, increases faster than 
uw and w, at lower Rayleigh numbers, but for Ra > 5 x lo6 has roughly the same 
scaling as uw and w,. This would suggest that the characteristic velocity should be 
taken from the curve following u, and wc, 0 . 2 7 R ~ O ~ ~ .  This is in surprising agreement 
with the experimental result in figure 1 of Sano et al. (1989) for an aspect-ratio-1 
cell, Re = 0 . 3 0 9 R ~ ~ ~ ~ ~ .  There is no reason to expect such excellent agreement in 
magnitude since Wu & Libchaber (1992) find experimentally that the Nusselt number 

- 56 
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FICLJRE 12. Depcndcnce of velocity scalcs defined in figure 9 on Rayleigh number. +, u,d/ti. 0, 

u,d/u; A, n,d/rc: - - - through u,dIti and w,d/K goes as 0.25Rao4‘; - - - through u,d/x 
goes as 0.074Run5’: - - - - is the aspect ratio=l result of Sano et al. (1989) P e  = 0.309Ra0485. 

has a strong aspect-ratio dependence, but what might be more significant is that 
both the simulations and the experiment of Sano et al. (1989) find 5 < E < +. If 
e = 0.485 from Sano et al. (1989) is used, then (2.6) yields y rz -0.20, which is 
the large-aspect-ratio scaling law found by Wu & Libchaber (1992). Shraiman & 
Siggia (1990) suggest that the scaling for Peclet number is greater than Ra3/’ due to 
logarithmic corrections. Note as well that the velocity scaling does not agree with the 
classical result (Deardorff 1970). This inconsistency between data, both experimental 
and simulated, and theory will be discussed further in the conclusion. 

Figure 13 plots four boundary-layer heights taken from the simulations. Two are 
taken directly from the position of the maxima of the profiles of temperature T’2 and 
velocity u,,, in figures 8 and 9 respectively. To improve the statistics, the positions with 
respect to the upper and lower walls have been averaged and a parabolic fit between 
mesh points has been used to determine these positions. This averaging and parabolic 
fitting was also used to determine the maxima of the horizontal kinetic energy and 
temperature in figures 11 and 12. The two lower curves are indirect measurements 
of z* using (2.8),(2.10) that are designed to test the prediction of Shraiman &I Siggia 
(1990). Three curves, Ru-’I7, and R u - ~ ’ ~ ,  are included to allow comparisons 
with the theoretical expectations. 

Beginning with the thermal length scale i~, Ra-”? ~ not Rap’/’ - fits this most 
closely. If AT had been taken from the temperature derivative at the wall, it would 
scale as 1/Nu = R u - ~ / ~ .  Instead, it appears that AT defined as the position of the 
peak of the fluctuation profile scales as N u  - I, which for this range of Rayleigh 
numbers goes as Ra-OT2. If Nu - 1 is interpreted as the turbulent contribution to 
the heat flux coming from vertical velocity and temperature fluctuations, perhaps it 
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FIGURP 13. Dependence of boundary layer heights on Rayleigh number: A, ?.T/d taken from figure 
8; 0, Auld taken from figure 9;  f, z * / d  = o/(uwd/ti) (2.8); - - -, x, z * / d  = 2 ( a / ( ~ ~ d ~ / t i ) ) ’ I ~ ;  
- - -~ through i T / d  goes as 5.9Ra~’I’; - - - through Auld goes as 0.65RaC11’; - - 
through z ” / d  goes as 2.1RaC317. 

is not surprising that AT taken from the fluctuating temperature profile scales as the 
fluctuating part of the heat flux. 

taken from figure 9 is compared in figure 
13 with the Castaing et al. (1989) prediction - R a d ,  = Pu = 1/7 = 0.14. 
The agreement is excellent, but because Au is taken from a fluctuating shear profile 
this agreement should not be taken as evidence for a mixing layer as proposed by 
Castaing et al. (1989). 

The lower two curves representing z* (2.8),(2.10) superficially match the prediction 
of Shraiman & Siggia (1990) that the characteristic velocity and the surface stress 
should be related by a length scale proportional to z* - 1/Re in the same way they 
would in a turbulent boundary layer. That is, the length scales determined by the 
velocity scale u, (2.8) and wall stress 7, (2.10) scale roughly as Rap3/7,  shown by 
the dashed curve; and a least-squares fit to z, yields an exponent of 0.95:6/7, the 
prediction of Shraiman & Siggia (1990). But the assumption of Shraiman & Siggia 
that A,, = z* > AT is violated since z* is well within the thermal boundary layer. The 
ratio Ar / z*  seems too large to be simply accounted for by logarithmic corrections. 
Furthermore, the largest simulated Rayleigh number Ra = 2 x lo7 is well below the 
largest experimental large-aspect-ratio Rayleigh number of 10’” in Wu & Libchaber 
(1992) with N u  - Ra”’ scaling. Therefore, one should expect & / z *  to grow even 
larger for Ra > 2 x 10’. 

There are two other differences between these results and the assumption of 
boundary-layer scaling by Schraiman & Siggia (1990). First, the position of the 
maximum of u,,,~ in turbulent boundary layers such as Kim et al. (1987) is at about 
1Oz*, in wall units. Here is greater than lOz* at Ra = 2 x lo7 and the ratio would 

The velocity boundary layer height 
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be expected to continue growing. Second, the maximum of urmS is 2 . 5 ~ ' ' ~  in Kim 
et al. (1987), but here uw w 0 . 5 ~ " ~  in dimensionless units. These two observations 
make it unlikely that the profile of u,, for z e z *  would be a log layer with the same 
coefficients as in turbulent boundary layers, as assumed by Shraiman & Siggia (1990). 
Further work will be necessary to determine how the profile of u,,, for z ~ z "  scales 
with the Rayleigh number. 

6. Vertical-velocity skewness 
Since the work of Willis & Deardorff (1974) it .has been understood that the 

skewnesses of vertical velocity and of temperature fluctuations need to be accounted 
for in theories of turbulent diffusion in the atmospheric boundary layer. An example 
of how the skewnesses are used is the theory for transport asymmetry by Wyngaard 
& Wed (1991). These theories assume that the vertical-velocity skewness 

is positive, which is found in measurements of atmospheric convection above heated 
surfaces by Lenschow, Wyngaard & Pennell (1980), as well as in laboratory experi- 
ments by Adrian, Ferreira & Boberg (1986) and simulations by Moeng & Rotunno 
(1990) with heated lower surfaces and insulating upper surfaces designed to represent 
aspects of atmospheric convection. Figure 14 shows profiles in z of S ,  for three 
of the Rayleigh numbers simulated here. Unlike the atmospheric situation, where 
S, is always positive, S,, for Rayleigh-Binard convection is negative in the surface 
layer above the lower surface, correspondingly positive under the upper surface, and 
nearly zero across the centre of the box. This profile for S, has been seen before in 
Rayleigh-Benard simulations with no-slip surfaces by Eidson et al. (1986) and Moeng 
& Rotunno (1990) and the water-tank experiments of Willis & Deardorff (1974). 

Moeng & Rotunno examined the issue in detail. Intuitively one might expect that 
as localized plumes accelerate above a heated surface they would produce positive 
S , .  This is what occurs if the upper surface is insulated, where S, jumps from 
zero at the boundary to a constant positive value within the surface layer in the 
simulations of Moeng & Rotunno (1990). They reason that S, was negative at 
the lower surface in Rayleigh-Benard convection because there are plumes of cold, 
descending fluid that extend between the two surfaces, hitting the lower surface with 
localized negative velocity that yields negative S,. At the upper surface an analogous 
situation occurs, where rising plumes of hot fluid hit the upper surface with localized 
positive velocity, yielding positive S,,,. Another way Moeng & Rotunno look at the 
problem is to superimpose two cases, one heated at the bottom and insulated at the 
top and its mirror image, cooled at the top and insulated at the bottom. The resulting 
superposition S,  yields the profile of S, seen for Rayleigh-Bknard convection. 

Although Moeng & Rotunno (1990) studied only one Rayleigh number, they 
suggested that as Rayleigh number increases the region of negative skewness would 
thin. Figure 14 shows this effect, with the region of negative skewness being roughly 
the same as the boundary-layer thicknesses given in figures 7 to 10. Across the centre 
of the box the skewness profile appears to be approaching a regime with zero slope 
and there are no indications that S,  overshoots zero at the top of the boundary. One 
might question this conclusion since the profile at the highest Rayleigh number, figure 
14(c) at Ra = 2 x lo7, is not perfectly smooth. But by plotting the unnormalized 
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FIGURE 14. S,(z): ( a )  Rn = 5 x lo4; ( b )  RU = lo6; (c) Ra = 2 x 10’; ( d )  w3,  Ra = 2 x 10’. 

vertical velocity cubed, figure 14(dj shows that there is no overshoot to opposite 
values at the top of the boundary layer. Furthermore, what fluctuations there are 
across the centre are an order of magnitude smaller than the values at any individual 
time, consistent with using a statistical sample of at least one convective timescale. A 
rough estimate suggests that it would require a simulation of at least three convective 
timescales before figure 14(c) would not show any discernible fluctuations. 

The trend where the thickness of the region of negative S, decreases suggests 
that in a high Rayleigh number experiment that could not penetrate the diffusive 
sublayer, which applies to all atmospheric measurements, negative S, could never 
be seen. From this, caution should be used in interpreting the rise in S, when the 
upper surface is insulated as in large-eddy-simulations such as in Moeng & Wyngaard 
(1988). One simulation of Rayleigh-Bdnard convection where negative S,, is not seen 
above the lower surface is the free-slip simulation of Balachandar & Sirovich (1991). 
It is argued in Schmidt & Schumann (1989) that the sign of S, in the surface layer 
changes from positive to negative when there is net kinetic energy transport into the 
surface layer, which in their large-eddy simulations is associated with increasing the 
surface roughness. This would be consistent with S,* > 0 near the lower boundary 
in a free-slip simulation, where the absence of a surface boundary layer implies no 
energy flux into the boundary, and S, < 0 in a no-slip simulation with a surface 
boundary layer and strong surface dissipation. It will be demonstrated in the next 
section that incoming plumes and negative S ,  could be an important ingredient in 
producing the shears that are used theoretically to explain hard turbulent scaling. 
The failure of a free-slip calculation to produce negative S, could be further evidence 
for the importance of a true viscous boundary layer in the hard turbulence regime. 
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FIGURE 15. Colour contour plots in horizontal planes of the temperature and vertical velocity for 
Ra = 2 x lo7 at Tw,/8 = 1.47. Each plot is scaled to its own minimum and maximum. In this 
figure levels are near the lower surface; BOTl: z = -0.97, BOT2: z = -0.83, BOT3: z = -0.61. 
Note the dominant convective structure, buoyant sheets leaving surfaces and plumes colliding with 
the surfaces, producing a cellular pattern with fine networking near the surfaces. 
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FIGURE 16. As in figure 15. Mid-levels, MIDI: z = -0.32, MlD2: centre z = 0, MID3: z = 0.32. 

7. Flow structures 

Figures 15 to 17 show the temperature and vertical velocity near the lower sur- 
face, near the mid-plane, and near the upper surface, each with three levels going 
from bottom to top for one time for Ra = 2 x lo7. The nine levels are equally 
spaced in terms of Chebyshev colocation positions at z = -0.97,-0.83. - 0.61,. 
- 0.32,0,0.32,0.61,0.83,0.97. Each figure is scaled between the minimum and maxi- 
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FIGURE 17. As in figure 15. Top levels, TOPl: z = 0.61, TOP2: z = 0.83, TOP3: z = 0.97. 

mum of T or w in that figure rather than scaled on global values. Therefore T’ rather 
than T is shown. Plots based on global values were produced, but the rendering 
shown highlights up- and downdraughts better. These planes were chosen to illus- 
trate the dominant convective structure: buoyant sheets leaving surfaces and plumes 
colliding with the surfaces, producing a cellular pattern. Several additional features 
in these plots are worth noting. 

First, there are the fine networks near the surfaces, well within both the viscous 
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FIGURE 18. Horizontal contour plots half-way from the lower surface. (a) Temperature fluctuation 
T' = T - T(z). ( b )  Vertical velocity w. Compare to colour contours for heights BOT3 for 
Ra = 2 x lo7 in figure 15. Cell walls become thinner and more intermittent at higher Rayleigh 
numbers, but the characteristic size of the cellular pattern does not seem to change. 

and thermal surface layers, levels TOP3 and BOT1. The networks represent cold 
and hot sheets leaving the surfaces as downdraughts and updraughts, respectively. 
At these levels, broader regions of blue in both T' and w at BOTl and yellow at 
TOP3 represent plumes penetrating from the opposite surfaces. But the most extreme 
deviations from the bulk of the vertical motions are small yellow dots in w at level 
BOTl and blue dots at level TOP3 of fluid leaving the surfaces. These might be 
small regions of intense vertical vorticity at these levels. As one moves away from 
the boundaries to a position just outside both the thermal and viscous surface layers 
in TOP2 and BOT2, the finest scale networking disappears as strong shears develop 
from plumes from the opposite surface that hit the surface layers and spread out. 
Broad expanses of opposite in sign temperature, blue at levels BOT2 and BOT3 and 
yellow in TOP1 and TOP2, dominate over the finer scale sheets, yellow and orange 
near the bottom and orange and blue near the top. This mechanism for the generation 
of strong shear near the surfaces was noted by Moeng & Rotunno (1990). In the 
regions dominated by small-scale flows away from the walls, there are also more 
small-scale vertical vortices indicated in the temperature plots by intense blue at level 
TOP2 and yellow at level BOT2. Similar structures have been observed by Moeng & 
Rotunno (1990) for Ra = 380000, and Grotzbach (1982). These networks of sheets 
are not consistent with the spoke patterns observed by Busse & Whitehead (1974), 
which extend through the box. 

The second feature to note is a dominant alignment at all levels along diagonals 
that separate the large-scale pattern into two generally upflowing regions staggered 
between two downflowing regions. This pattern appears for all the Rayleigh numbers 
simulated, illustrated for the smallest Rayleigh number Ra = 5 x lo4 in figure 18 
and the largest Ra = 2 x lo7 in figures 15-17, and for all times. Qualitatively, the 
buoyant sheets thin and become more turbulent as the Rayleigh number increases, 
but otherwise the large-scale diagonal pattern persists. These large-scale diagonal 
patterns are very similar to patterns in simulations currently underway (Kerr, Herring 
& Brandenburg 1995) with impenetrable, free-slip sidewalls where the influence of the 
geometry is obvious. Test calculations show these patterns appearing once the aspect 
ratio L/d 3 3 and they might be related to large-scale patterns seen up to aspect ratio 
12 in water-tank experiments by Krishnamurti & Howard (1981) and Krishnamurti 
(1995). The pattern therefore appears to be related to the domain geometry and 
shows the influence of the boundaries, despite periodic side boundary conditions 
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FIGURE 19. Horizontal velocities visualized using arrows indicating qtrength and direction at level 
TOP1 -7 = 0.61, near the boundary, overlaying contours of vertical velocity at level MID3 z = 0.32. 

and the relatively large aspect ratio compared to the most unstable wavelength in 
linear theory for convection with no-slip boundaries at Ra = 1708 of L/d = 2.016 
(Chandrasekar 1961). 

While a large-scale flow, that is a large mean velocity compared to the r.m.s. 
velocity, is not observed here as in experiments (Krishnamurti & Howard, 1981) 
and some simulations with impenetrable sidewalls (Werne 1993), there is large-scale 
organization with respect to the geometry and the aspect ratio is obviously still too 
small to determine if there is some asymptotic large-scale structure in Rayleigh- 
Benard convection. In the atmospheric context, whether there is a maximum size to 
the cellular pattern and its relationship to boundary conditions has been addressed by 
large-eddy simulations of Fiedler & Khairoutdinov ( 1994). Regardless of the influence 
of the domain size, if the cellular pattern is a result of plumes crossing the box and 
hitting the surfaces, which is the same mechanism proposed for the production of the 
boundary-layer shear, then the appearance of the cellular patterns at all the Rayleigh 
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FIGURE 20. Volume rendering of temperature for one time from the Ra = 2 x lo7 calculation. Note 
the dominant large-scale diagonal pattern, which persists for all Rayleigh numbers simulated and 
all times. 

numbers simulated also suggests that strong shears that would alter the classical 
scaling relationships exist for all the Rayleigh numbers simulated. 

To illustrate how horizontal velocities in the boundary layer are related to the 
vertical velocity, figure 19 uses arrows indicating strength and direction for the 
horizontal velocities overlaying a shaded contour plot for vertical velocity. Levels 
near the upper boundary are taken, with the level for vertical velocity slightly further 
from the boundary than the level for horizontal velocities. The dominant feature is 
strong horizontal velocities coming from regions impacting the surface that converge 
into the thin sheet-like downdraughts. Similar patterns have been reported by Mason 
(1989). The relationship between vertical and horizontal velocities just shown suggests 
a connection between negative S ,  and strong horizontal shears at the top of the lower 
surface layer. 

To show to what extent buoyant sheets are seen in the overall flow, figure 20 
shows a volume rendering of the temperature field for one time from the Ra = 2 x lo7 
calculation. This figure clearly shows the large-scale cellular pattern extending between 
the surfaces and the small-scale networking near the surfaces indicated by the x-y 
slices just discussed. 

Figure 21 shows a vertical cross-section of T for 12 times for Ra = 2 x lo7. 
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FIGURE 21. Vertical x,z cross-sections of T at 12 times. The vertical direction z has been stretched 
by a factor of 2. Times run up the column on the left from bottom to top, then up the column on the 
right, Tw,/4d = 0.35, 0.36, 0.37, 0.38, 0.400, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.48 The cross-sections 
arc through a line 3/4 from the lower boundary in figures 15-17 and the nearest wall in figure 20, 
but at much earlier timcs than those figures. Arrows indicate the following events. At Tw,/4d = 
0.35 a hot updraught on the right is indicated. This appears to induce two cold downdraughts, one 
to the left of the thick up-arrow and one across the periodic boundary at  the left edge of the figure. 
As time progresses small hot updraughts, indicated by three thin up-arrows, develop between the 
two downdraughts and are swept together to form a single large updraught a t  Tw,/4d = 0.42 and 
latcr times. 

The objective is lo show a sequence of emerging plumes from the upper and lower 
surfaces. The sequence. starts with a strong, hot, upwelling plume near the right 
periodic boundary, which scems to induce cold downdraughts as indicated, which in 
turn sweep together small updraughts into a new strong updraught near the middle 
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starting near t = 0.42. This process occurs at roughly the same location throughout 
the calculation, consistent with the persistence of the large-scale diagonal structure. 
In the experiments of Zocchi et al. (1990) plumes coming off the surfaces are strongly 
sheared, which is not observed here. Instead, these visualizations resemble a similar 
time series in the large aspect-ratio experiment of Chu & Goldstein (1973). 

The strong shear above the surface layer in the experiment of Zocchi et al. (1990) 
seems to be related to the strong rotational flow. Comparison of these simulations with 
preliminary small-aspect-ratio calculations having periodic boundary conditions and 
P r  = 0.7, performed as part of the current investigation, and a wide variety of other 
simulations mentioned here point to a complex relationship between large-scale shear, 
rotational patterns and boundary conditions, aspect ratio and Prandtl number. The 
small-aspect-ratio calculations with periodic boundary conditions suggest a transition 
to a flow with sheared plumes for Lid below 1.5 to 2. But even for the large-aspect- 
ratio simulations without a mean shear, an analogy can be drawn with simulations 
with sidewalls in how strong shears are maintained. In the visualizations of small- 
aspect-ratio flows with sidewalls showing large-scale flow, reported experimentally by 
Zocchi et aE. (1990) and numerically in two dimensions by Werne (1993), a major 
feature of the dynamics maintaining the large-scale flow is the collision of a surface 
boundary layer with a vertical wall that produces a flow along the sidewall that 
hits the opposite horizontal surface and generates new shears. In our calculations 
with periodic lateral boundary conditions and large aspect ratio, the collisions with 
the vertical walls could be replaced by collisions between surface layers, with the 
resulting vertical plumes again hitting opposite walls and driving new surface shears. 
From this point of view, even when compared to simulations with sidewalls and 
experiments at low aspect ratio the differences in the overall flow are only apparent; 
if a portion of these calculations containing half of one roll were compared the flows 
would look similar. This process of creating new shears is basically two-dimensional 
and our vertical cross-sections have qualitative similarities to strictly two-dimensional 
simulations (Werne 1993). This is part of what inspired the suggestion of a two- 
dimensional analogy for energy spectra in $4 that was not supported by other 
evidence. 

8. Distribution functions 
One of the features most stressed in the original hard turbulence experiment of 

Heslot et al. (1987) was how distributions of temperature in the centre plane changed 
from Gaussian to exponential at the same Rayleigh number that the scaling of the 
Nusselt number changed from 1/3 to 2/7. Therefore, it is important to report the 
qualitative dependence of distributions of temperature on Rayleigh number in these 
simulations. Without an in-depth discussion of resolution dependence and other 
detailed properties these results should be used in further comparisons with caution. 

Figure 22 shows temperature distributions about the midplane for Ra = 5 x lo4, 
lo6, 5 x lo6, and 2 x 10'. For all of these Rayleigh numbers. a trend towards 
exponential-like distributions, which is sharper than Gaussian, is indicated. At the 
lowest Rayleigh numbers the exponential distribution exists upon a broader, nearly 
Gaussian profilc. not shown, that extends to T = -1 and 1. To show how close to a 
true exponential the distribution for Ra = 2 x lo7 in figure 22 is, figure 23 plots the 
temperature variance flatness profile 

(8.1 1 
~~ 

Ff, = T'"( T ' y  
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F I ~ ~ U R E  22. Temperature distributions about the midplane. (a) Ra = 5 x lo4, (b)  lo6, (c) 5 x lo6, 
( d )  2 x lo7, -0.29 2 z 2 0.29. By neglecting broad wings out to T = -1 and 1 at lower Rayleigh 
numbers, exponential distributions in the centre are found in all cases. 
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FIGURE 23. Time-averaged temperature variance flatness F T ~  (8.1) for Ra = 2 x lo7. F T ~  = 4.5 

through the centre of the box. 
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FIGURE 24. Histograms of temperature at different locations for Ra = 2 x lo7. 
(u )  -0.81 3 z < -1.0, (b)  -0.32 3 z 2 -0.79. i~ = k0.97 from figure 8. 

T T 

for Ru = 2 x lo7. FTf is roughly 4.5 through the centre of the box, which would place 
the distribution half-way between a pure Gaussian FT,  = 3 and a pure exponential 
F ,  I = 6. While temperature distributions have been useful in identifying the transition 
to hard turbulence, it is not clear what significance they have in themselves, since 
they are found in a variety of simulated turbulent flows (Mbtais & Lesieur 1992). 

Besides determining temperature histograms in the centre of the box, Castaing 
et al. (1989) placed a probe near one wall and saw a dependence upon Rayleigh 
number. By holding the position of the probe fixed and changing the Rayleigh 
number, Castaing et a/ .  also determined how the temperature distributions change 
with vertical position. This is because, as Rayleigh number increases, the height of 
the thermal and momentum boundary layers decreases. So, if the probe is within 
the surface layer at one Rayleigh number, it will be outside it at a higher Rayleigh 
number. If interpreted in terms of position, the histograms of Castaing et al. indicate 
a trend from negatively skewed temperature (4.8) to positively skewed as the probe 
moves out from the wall. 

With a simulation, histograms of temperature at different locations can be de- 
termined directly and are shown in figure 24 for the calculation at Ra = 2 x lo7. 
A progression from an extremely non-symmetric distribution within the surface 
layer in figure 24(u), via an intermediate region outside the surface layer in figure 
24(h), to a symmetric distribution in figure 22(d) can be seen. Figure 24(u) is for 
-0.81 3 z > -1.0, 24(h) is for -0.32 3 z 3 -0.79, and 22(d) is for -0.29 3 z 3 0.29 
about the midplane, where the peaks of the temperature fluctuation variance in figure 
8 are at z = 21 = f0.97. The average temperature for the regimes covered by figures 
24(h) and 22(d) is r ’5 0. So in figure 24(b), if the distribution is skewed with one 
side of r = 0 having a strong peak, one would expect the other side to have a long 
tail, as observed. The average temperature -T in figure 7 at z i0.91. the middle 
of the regime covered by figure 24(a), is kO.1, so asymmetry with respect to r = 0 
is expected. The peak in figure 24(a) just below a value of 1 might represent the 
intense bright, probably vortical, knots of nearly maximum temperature in figure 
15, level BOT2, T’, or on the opposite side knots of intense black nearly minimum 
temperature. It is more difficult to pick these structures out of the frames closer to 
the walls, levels BOTl and TOP3, in temperature, but their persistence nearer the 
walls is suggested by the most extreme deviations in vertical velocity at these levels, 
the bright yellow dots of w at level BOTl and blue dots of w at level TOP3. 
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FIGURE 25. Time-averaged temperature variance skewness ST/ (8.2) for Ra = 2 x lo7 

Sr, is negative in the lower surface layer and positive abovc it. 

Examination of the temperature fluctuation skewness 

in figure 25 can give us some insight into the origin of these non-symmetric distri- 
butions. In figure 25 Src is negative in the lower surface layer and positive above 
it, before changing sign at the midplane. The region of negative STf corresponds to 
the distribution in figure 24(a), and the region of positive skewness corresponds to 
figure 24(b). In figure 24(u) the temperature distribution within the surface layer is 
broad with two peaks near T = 0 and T = 1. T' in figure 24(a) is negatively skewed 
because there is a negative tail below T = 0, but there cannot be a corresponding tail 
above T = 1. But in figure 24(6), outside the surface layer, there is a long positive 
tail and STt is positively skewed. As noted, a similar trend from a negatively skewed 
distribution to a positively skewed one also appears in the experimental result of 
Castaing et al. (1989). 

The negative temperature skewness probably has an origin similar to the negative 
vertical velocity skewness S ,  in figure 14 in the sense that both negative skewnesses 
result from incoming intense plumes dominating the background. Examples of local 
temperature hot spots within the upper surface layer are shown in figure 15, level 
BOT1, and figure 17, level TOP3. The origin of the positive skewness above the 
lower surface layer could be the localized buoyant sheets in levels BOT2 and TOP2. 
As Rayleigh number increases, the region of negative skewness thins in a manner 
analogous to the thinning of the negative surface layer of S ,  in figure 14. If one 
accepts the argument presented here and in Moeng & Rotunno (1990) that the source 
of the anomalous skewness of S ,  and ST,  in the surface layers is plumes hitting the 
surface, which in turn leads to strong shears at the top of the surface layer, then 
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the common trend in the experiments and thesc simulations for the skewness of the 
distribution functions would point to the same fundamental mechanism for producing 
shears in both cases, even though significant differences in the overall flow pattern 
seem to appear. 

For free-slip upper and lower surfaces, distributions near walls in Balachandar & 
Sirovich (1991) are not as different from the central distributions as the experimental 
distributions of Castaing et al. (1989) or the numerical distributions in figure 24. 
In particular, with free-slip boundaries ST,, like S , ,  is probably not negative near 
the lower wall as in the no-slip simulations and experiments. This would support 
the conclusion that the surface shears used theoretically to explain hard turbulence 
scaling require no-slip upper and lower surfaces. 

9. Conclusions 
Evidence has been presented that for this series of high-resolution simulations of 

Rayleigh-Benard convection with large aspect-ratio and periodic boundary condi- 
tions, there is evidence for a Rayleigh number scaling regime with the properties of 
hard convective turbulence. The primary result uses secondary scaling properties to 
support the existence of scaling consistent with a normalized heat flux, the Nusselt 
number, going as N u  - R& BT = 0.276 FZ 2/7, not 1/3. It could be argued that 
there is evidence for Nu - 1 - Rail3, but given the excellent agreement of velocity, 
temperature and boundary-layer depths with experiments and theoretical predictions 
it appears that if the simulations could be continued to sufficiently high Rayleigh 
number the 2/7 dependence for Nusselt number would become stronger. Together 
with visualizations suggesting the presence of persistent shears and temperature dis- 
tribution functions similar to experimental observations, the evidence is that the 
experimental high Rayleigh number regime is being simulated. Although the geom- 
etry is significantly different than the original low-aspect-ratio experiment of Heslot 
et al. (1987), many of these scaling laws have also been determined in recent two- 
dimensional simulations by Werne et al. (1 991) and large aspect-ratio experiments by 
Wu & Libchaber ( 1  992). The challenge now is to construct a high Rayleigh number 
theory that incorporates the low Rayleigh number scaling discussed here that can be 
extended to higher Rayleigh numbers. Since the boundary-layer scaling indicates no 
additional cross-overs and because the energy spectrum has developed the charac- 
teristic Kolmogorov -5/3 power law, there would be nothing inconsistent if such a 
theory predicted 'hard' turbulence as the asymptotic large Rayleigh number state for 
convection with no-slip (rigid), constant-temperature upper and lower surfaces. 

The experimental visualizations of Zocchi et al. (1990) and the scaling theory 
of Shraiman & Siggia (1990) have previously suggested that boundary layers with 
shear are part of the dynamics of hard turbulence. The visualizations and scaling 
laws determined from these numerical simulations also point to the importance of 
a true viscous boundary layer and no-slip boundary conditions in the dynamics of 
hard turbulence, even if the large-scale structure of the experimental flows is not 
reproduced. Important boundary layer effects related to negative vertical velocity 
and temperature skewnesses at the walls are not produced by the calculations using 
free-slip surfaces by Balachandar & Sirovich (1991). Evidence for a viscous boundary 
layer is given in figure 13, which plots length scales calculated from the characteristic 
velocity and wall stress in the manner suggested by Shraiman & Siggia. The leading- 
order scaling is very close to what Shraiman & Siggia suggest, even if the details of 
coefficients and logarithmic corrections they propose are not supported. However, the 



176 R .  M. Kerr 

length scale defined in this way is within the thermal boundary layer = z* < jLT 

with pz = 3/7 > 2/7 = P T ,  not outside it as assumed by Shraiman & Siggia. In a 
sense this is satisfying because they predict a cross-over to a new type of behaviour 
at very large Rayleigh numbers based on the Rayleigh number where Z* < i T .  Since 
z* < iT is already true, the predicted cross-over should not occur, in agreement with 
the experiments which suggest that hard turbulence is the only large Rayleigh number 
state. 

If z* < iT ,  why is the heat flux suppressed as calculated by Shraiman & Siggia, 
if one of their primary assumptions is not true? Rather than the viscous boundary 
layer smoothly advecting the thermal boundary layer and modifying the heat flux as 
Shraiman & Siggia suggest, intermittent dynamics similar to those above the viscous 
sublayer in a turbulent boundary layer could be playing some role in the dynamics 
within the thermal boundary layer in hard turbulence. It could be that the second 
velocity boundary-layer height 2, identified in figures 9 and 13 plays a role. iL, was 
identified from the profile of the horizontal velocity u,,, and could be tied to sheared 
boundary layers by the relationship of the peak of u,, to the wall stress (2.8),(2.10). 
Castaing et al. (1989) predicts a mixing length height without invoking boundary 
layers that has the same scaling as A, with p2, = 1/7 < 2/7 = P I .  

If hard turbulence is the asymptotic high Rayleigh number state, what of the 
common belief that the large Rayleigh or Reynolds number state of a flow is 
associatcd with a turbulent cascade to small scales'? Two signs of a cascade forming 
in these calculations are that the velocity-derivative skewness S, is nearly 0.5 in figurc 
3(b) and the total kinetic energy spectrum is about kP5l3 for an intermediate range of 
wavenumbers in figure 5(e). The question of whether there is a cascade might hingc 
on the number of small velocity length scales in the flow. Herring (1966) has shown 
that a Kolmogorov energy spectrum would be consistent with only one boundary 
layer depth for both velocity and temperature. In addition to the thermal boundary 
layer thickness ,I7, two velocity scales have been identified, & and z* ,  neither of which 
scales as the Kolmogorov length scale q (4.2); y, the only small scale assumed if there 
is a cascade, would be a third small length scale, with bl? = 9/28 = 0.32 > 2/7. 

Since there is more than one small scale, it would not be surprising to see effects 
contrary to one's expectations based upon cascade arguments. For example, for 
Prandtl number of the order of one, for passive scalars in isotropic turbulence the 
only spectral regimes expected for both velocity and temperature are kP5/' and an 
exponentially decaying high-wavenumber end. Instead, the temperature fluctuation 
spectrum decreases as k-' in figure 5 ( f ) .  This is consistent with the laboratory 
measurements of Deardorff & Willis (1985). It is also usually assumed that a 
turbulent cascade leads to isotropic small scales. The visualizations in $7 show 
strongly anisotropic structures which extend vertically across the box with horizontal 
dimensions down to the smallest length scales of the flow. 

The numerical temperature fluctuation spectra are consistent with experimental 
frequency spectra in the sense that both these numerical spectra and experimental 
spectra are significantly less steep than -5/3.  To explain the leading-order c1)-7i5 

experimental result of Sano et nl. (1989), Castaing et a/. (1989) invoke stratified 
arguments from Bolgiano (1 959). Yakhot (1992) predicts the same result via different 
arguments. Complementary to the theoretical prediction for temperature spectra is a 
prediction of energy spectra going as -11/5, steeper than -5/3.  Let us consider some 
of the assumptions and the evidence from the observations, then list several alternative 
explanations for the dynamics that might lead us to new insight in reconciling thc 
inconsistencies between results consistent with homogeneous turbulence and thc 
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strongly inhomogeneous properties that are required to produce the boundary layers, 
boundary layers that appear to be needed to produce the observed deviations from 
classical heat flux scaling. 

First, there is experimental support for stratification in water tank convection 
experiments, that is a stable, inverse temperature gradient across the centre of 
the box. But the only attempt to experimentally measure wavenumber spectra 
directly, by Deardorff & Willis (1985), would support these numerical results, that 
is energy spectra going as -5/3 even while the temperature spectrum is less steep. 
A contradictory observation is that velocity fluctuations scale as u(1) N 1 3 / 5  (Tong & 
Shen 1992), which is equivalent to a -11/5 energy spectrum. Another approach to 
explaining temperature fluctuation spectra less steep than k-5/3  would be to assume 
that temperature fluctuations are created at all scales, which would be consistent with 
the strongly anisotropic structures seen and might still allow a -5/3 energy spectrum. 
It could also be argued that temperature spectra less steep than -5/3 are not 
surprizing since, with the possible exception of Kaimal et al. (1976), the experimental 
evidence for a kk5l3  temperature variance spectrum has not been strong (Champagne 
et al. 1977; Sreenivasan 1991). It should also be noted that most of the experiments are 
in water with a higher Prandtl number than these simulations and ongoing simulations 
of variable Prandtl number (Kerr et al. 1995) leave open the possibility of different 
dynamics at different Prandtl numbers. These new calculations might also determine 
the origin of some of the differences in the large-scale structure, in particular that 
there is diagonal alignment and a dominant recirculating pattern is not observed here. 

While the secondary scaling exponents summarized in table 1 agree with aspects 
of the theories of both Castaing et al. (1989) and Shraiman & Siggia (1990), the 
differences noted here, in experiments and in two-dimensional simulations (Werne 
et al. 1991), seem consistent in ways suggesting that they are true differences with 
the theoretical predictions that are more than logarithmic corrections (Shraiman & 
Siggia). In addition to confirming that the exponent E in (2.1) is closer to 1/2 than 
either the hard turbulence or classical predictions, these calculations also find a new 
type of temperature scaling at the top of the thermal boundary layer, A ,  - Ra-l/14. 

E > 3/7 poses several problems for the theoretical relations outlined in $4. If e > 3/7 
and PT = 2/7, then (2.5) cannot be satisfied; and i f f  > 3/7, y = -1/7, and PT = 2/7, 
(2.6) is not satisfied. These are relatively minor differences with the theoretical 
assumptions that a more complete theory that also explains the anamolous spectra 
and structures would hopefully account for. 
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